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3.8 Optimisation of artificial neural networks for
predicting fish assemblages in rivers®
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introduction

Fish assemblages are among the most sensitive and reliable indicators of the ecological
status of stream and rivers (Fausch et al. 1990). Fish assemblages are able to integrate over
both time and space the biological response to ecological processes more effectively than
other biotic components (Harris 1995). Sampling fish fauna, of course, is not as simple as
sampling other organisms, but.in spite of this problem indices of biotic integrity based on
fish have been developed and are now widely accepted (Karr 1981; Karr et al. 1986). Tar-
geting fish fauna in environmental monitoring activities is effective not only from the eco-
logical point of view, but also in the light of the need for straightforward communication
with decision-makers as well as with other stakeholders. In fact, fish are probably the most
direct and intuitive expression of aquatic ecosystem quality (McCormick et al. 2000).

Therefore, it is not surprising that composition, abundance and age structure of fish
fauna are considered as some of the main biological quality elements for the classification
of the ecological status of surface water in the EU Water Framework Directive (i.e. Direc-
tive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 estab-
lishing a framework for Community action in the field of water policy).

This Directive also states that biological reference conditions have to be established for
each type of water body. These reference conditions are based on community structure and

\ take into account all the biological quality elements, thus including fish fauna as well as

benthic macroinvertebrates and aquatic flora. Hence, modeling fish assemblage composi-
tion on the basis of biotic and abiotic environmental descriptors will play a major role in the
implementation of the Water Framework Directive and, more generally, in the management
of aquatic ecosystems.

Predicting fish fauna as well as other biotic assemblages is not only relevant to the defi-
nition of reference conditions that are aimed at the evaluation of environmental quality. In
fact, it is also an important achievement in scientific research, e.g. as a framework for stud-
ies on species interactions, and it can be very useful for a number of other applied tasks. In
particular, species composition models may support environmental management by simu-
lating different environmental scenarios and pointing out the most critical factors that need
changes or regulation. Sensitivity analyses of the species composition models play a rele-
vant role in this kind of studies.

* This chapter has been supported by the EU 5th Framework Programme PAEQANN project [“Predict-
ing Aquatic Ecosystem Quality using Artificial Neural Networks: impact of environmental charac-
teristics on the structure of aquatic communities (algae, benthic and fish fauna)”, URL:
http://aquaeco.ups-tlse.ft/], under contract EVK1-CT1999-00026.

Correspondence: mscardi@mclink.it
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Even though the idea of modeling fish fauna composition on the basis of environmental

“variables is not new (e.g. Faush et al. 1988), only recently Artificial Neural Networks
£ (ANNSs) have been applied to this problem. ANNs have been used to predict fish species
richness (e.g. Guegan et al. 1998) as well as density and biomass of single fish populations
g (Baran et al. 1996; Lek et al. 1996a,b; Mastrorillo et al. 1997b) and ecological characteris-
§ tics of fish assemblages (Aguilar Ibarra et al. 2003). As far as fish assemblage composition
i at the river basin scale is considered, only a few models have been developed so far, either
k. using conventional statistical methods (e.g. Oberdorff et al. 2001) or ANNs (Boét and Fhus
© 2000; Joy and Death, # 3.5; Olden and Jackson 2001). A very useful introduction to the

ecological applications of ANNs can be found in Lek and Guégan (1999).

ANNs and other modelling techniques that have been developed and formerly applied in
other disciplines have often been introduced into ecological applications with no modifica-
tion. In most cases this was not a problem and very useful results were obtained anyway.
‘However, in ecological modelling adaptations of the modelling techniques are sometimes
required in order to fit particular needs or to properly exploit the available information. This
is certainly the case of species composition models, as the data that are involved in this
kind of application cannot be regarded as mere numbers, because each species has a differ-
ent ecelogical “meaning”, which in turn depends on its coenotic context.

This chapter will present a case study about fish assemblages from some river basins in
north-eastern Italy, showing how the above-mentioned problem can be tackled by develop-
ing ecologically enhanced ANNS.

Data set

The ANN models presented in this study are based on a data set that included sampling
sites from several river basins in the Veneto region (north-eastern Italy), as shown in Fig.
3.8.1. The data set consisted of 264 records and it comprised two groups of variables. The
first group included the variables to be predicted by the models, i.e. 34 fish species,
whereas the second group embraced 20 predictive environmental variables, as shown in
Tables 3.8.1 and 3.8.2 respectively.

Adriatic
Sea

Figure 3.8.1 The sampling sites (black dots) were located in several river basins in the Ve-
neto region (NE Italy).
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Fish were collected by means of electrofishing gear. Either direct current or pulsed di-
rect current electrofishing devices were used in streams and small rivers, while these tools
were supported by nets when only part of larger rivers was sampled. Basically, in the latter
case the electrofishing area was closed by means of nets that also acted as a sampling de-

vice.

Table 3.8.1 List of the fish species in the Veneto data set. Modeled species are on white
background, while species that were excluded (see text) are on grey background. Italian
names are shown in parentheses for those species that do not have an English name.

Z

Scientific name

English name

1 Salmo (trutta) trutta (Linnaeus 1758) Sea Trout
2 Leuciscus cephalus (Linnaeus 1758) Chub
3 Padogobius marten.m (Giinther 1861) (Ghiozzo di fiume)
4 Scardinius erythrophthalmus (Li) 1758) Rudd
5 Esox lucius (Linnaeus 1758) European Pike
6 Rutilus erythrophthalmus (Zerunian 1982) (Triotto)
7 Alburnus alburnus alborella (De Filippi 1844) Bleak
8 Cottus gobio (Linnaeus 1756) Bullhead
9 Tinca tinca (Linnaeus 1758) Tench
10 Cobitis taenia (Linnaeus 1758) Spined loach
11 Phoxinus phoxinus (Linnaeus 1758) Minnow
12 Anguilla anguilla (Linnaeus 1758) European Eel
13 Knipowitschia punctatissima (Canestrini 1864) (Panzarolo)
14 Salmo (trutta) marmoratus (Cuvier 1817) Marble Trout
15  Sabanejewia larvata (DeFilippi 1859) Italian Loach
16  Ictalurus melas (Rafinesque 1820) Black Bullhead
17 Lepomis gibbosus (Linnaeus 1758) Pumpkinseed
18  Barbus plebejus (Bonaparte 1839) Italian Barbel
19 Chondrostoma genet (Bonaparte 1839) South Europe Nase
20  Gaster (Li 1758) Three-spined Stickleback
21 Carassius auratus (Linnaeus 1758) Crucian Carp
22 Gobio gobio (Linnaeus 1758) Gudgeon
\ 23 Leuciscus souffia (Risso 1826) Blageon
24 Thymallus thymallus (Linnaeus 1758) Grayling
25  Lampetra zanandreai (Viadykov 1955) Po Brook Lamprey
26  Gambusia holbrooki (Girard 1859) Eastern mosquitofish
27  Barbus meridionalis Meriditerranean Barbel
28  Micropterus salmoides (Lacepede 1802) Large-Mouthed Bass
29  Perca fluviatilis (Linnaeus 1758) Perch
30  Abramis brama (Linnaeus 1758) Common Bream
31  Cyprinus camm Winnaeus 1758) Common Carp

Two fish taxa, namely Oncorhynchus mykiss, i.e. the rainbow trout, and Salmo (trutta)
hybr. trutta/marmoratus, i.e. a sea trout - marble trout hybrid (on grey background in Table
3.8.1), were excluded from the models, as their distribution only partly depends on envi-
ronmental variables. In fact, the distribution of the first taxon is linked to the artificial re-
lease of reared juveniles, while that of the second taxon is clearly not independent of the
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distribution of the two parent species and is probably associated to problems in species
identification too.

Some of the available records refer to sampling activities that were carried out at the
same site at two different times, thus representing the local interannual variability of both
the fish fauna and the environmental variables.

The fish fauna composition was described using binary variables, i.c. presence or ab-
sence of each taxon. Quantitative data, although available in most cases, were not consid-
ered for model development as they were not sufficiently accurate because of the combined
effects of varying efficiency of the electrofishing gear and morphodynamic heterogeneity of
the sampling sites. The environmental variables were coded in different ways, either as
quantitative or semi-quantitative data, and all the non-binary variables were normalized by
rescaling them in the [0,1] interval.

Table 3.8.2 Environmental descriptors used as input (i.e. predictive) variables in the mod-
els.

1 elevation (m):.

2 mean depth (m)

3 runs (area, %)

4 pools (area, %)

5 riffles (area, %)

6 mean width (i)

7 boulders (area, %)

8 rocks and pebbles (area, %)
9 gravel (area, %)

10 sand (area, %)

11 silt and clay (area, %)

12 stream velocity (score, 0-5)
13 vegetation covering (area, %)
14 shade (%)

15 anthropogenic disturbance (score, 0-4)
16 pH

17 conductivity (uS cm™)

18 gradient (%)

19 catchment area (km?)

20 distance from source (km) _

The whole data set was divided into three subsets for training, validating and testing the
ANN models. The training data set included 50% of the records (n=132), whereas the vali-
dation and the test data sets included 25% each (n=66). Every record was assigned to a dif-
ferent subset after sorting all the records according to the elevation of the sampling sites.
Starting from the highest elevation, the records were divided into the above-mentioned sub-
sets by assigning uneven records to the training subset and by assigning each couple of suc-
cessive even records to the validation and test subset, respectively. This way, the records in
each group of four were assigned to the (1x) training, (2x) validation, (3x) training and (4x)
test data subset, with x ranging from 1 to 66. This break up strategy allowed a homogene-
ous allocation of records for different elevations classes among the three subsets, thus
stratifying the procedure on the basis of the most relevant environmental variable.
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' Neural network training

The most common type of ANN, i.e. the multilayer perceptron, was used for modeling the
fish fauna composition. The error back-propagation algorithm (Rumelhart et al. 198§a) was
used for training the ANNs, both in its original formulation and in a modified version that
> will be described later in this chapter. Other training algorithms were not tested because the
theoretical advantages ‘th‘ey‘ might provide (e.g. quicker training) are not really relevant for
ecological applicatinns. - ) )
" ANNs with;20;#nput nodes, 32 output nodes and 17 nodes in the hidden layer were se-
lected after;a;gesof empirical tests involving ANNs with different numbers of node_s in the
hidden layer.(from(10 to 40 nodes). The architecture selected was the one that provided the
minimum:overall error with respect to an independent test set. However, the selection of the
number of hodes'in the hidden layer was not a critical issue, as the differences among the
modglsx}ere negligible. Sigmoid activation functions [i.e. f(x)=1/(1-e™)] were used both in
the'Hidden and iri the output nodes of all the ANNs that have been trained and used in this
‘study.
v zorder to prevent overtraining, i.e. to avoid that the ANN “learned by heart” the fish
fauna compositior at each known site while losing its generalization ability, different
strategies were adopted. The first strategy involved stopping the training procedure early. In
other words, the training procedure was terminated as soon as the error, computed on the
basis of the validation set only, ceased to decrease monotonically (obviously, the validation
set records were never used as training patterns). The second strategy was based on the ran-
dom selection of a subset of training patterns at each epoch during the training procedure.
This way it was not pessible for the ANN to be influenced by the order in which the train-
ing patterns were submitted (thus possibly memorizing them). Finally, white noise in the {-
0.01,0.01] range was added to each input, i.e. predictive variable. Such a small random per-
turbation of the input values, also known as jitrering, favored the generalization of an ANN
model because the latter learned how to associate each output pattern with a set of input in-
tervals rather than with a single input pattern (Gydrgyi 1990).

The accuracy of thet ANN predictions was expressed by the percentage of Correctly
Classified Instances (CCI), while the significance of the deviation of the ANN predictions
from a random model was tested by means of the K statistics (Cohen 1960; Fielding and
BRI 1997). Details about the computation of CCI percentage and X statistics are provided
in the Appendix.

Model selection

A few different basic options are available for developing models of species distribution us-
ing ANNSs. The first option is to train a different model for each species, another is to train a
single model that is able to simultaneously predict the distribution of all the species. A fur-
ther option is to split the species list into two or more subsets on the basis, e.g. of trophic
characteristics, and to train a model for each subset. In the latter case, however, the number
of possible models is very high and selecting the best combination is not a straightforward
task.

If only the first two options are considered, the selection of the best approach may be
based on empirical tests, but there are also some theoretical considerations that should be
taken into account.

In fact, when modeling the distribution of a complex set of species, such as a fish as-
semblage, an ANN model that predicts more than a single species is able to learn not only
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the distribution of each species, but also some information about interactions among spe-
cies. Of course, ecologists know that this kind of information is relevant, but in many cases
their theoretical knowledge about species interactions is not adequate, as it is often based on
hypotheses, personal observations, etc. Therefore, it is not easy to exploit such knowledge
in modeling applications using conventional statistical methods (e.g. logistic regression).
Since ANNS are able to learn from data, they are also able to learn by themselves what is
relevant in species interactions and this may enhance their predictive ability.

CClI (%)
50% 60% 70% 80% 90% 100%
Ictalurus melas 98.5%
Perca flwviatilis 1 ~ 98.5%
Abramis brama . ] 98.5%
Cyprinus carpio 98.5%
Salvelinus fontinalis ] 98.5%
Gobio gobio 97.0%
Barbus meridionalis ] 97.0%
. Gambusia holbrooki 95.5%
Micropterus salmoides |l _ 95.5%
Chondrostoma genei 94.0%
Carassius auratus ] ] 94.0%
Lampetra zanandreai P 94.0%
Tinca tinca .A ) 92.5%
Salmo (trutta) marmoratus 92.5%
Sabanejewia larvata i il 92.5%
Leuciscus souffia i i 92.5%
Thymallus thymallus ] 92.5%
Scardinius erythrophthalmus ] 91.0%
Albumus alburnus alborella . 91.0%
Lepomis gibbosus ] ] 91.0%
Barbus plebejus 91.0%
Ruftilus erythrophthaimus ] ] 89.6%
Anguilla anguilla _ ] 89.6%
Leuciscus cephalus Il ] ] 88.1%
Gasterosteus aculeatus ] L ] . 88.1%
Salmo (trutta) trutta L 86.6%
Esox lucius 86.6%
Padogobius martensii 85.1%
Cobitis taenia 85.1%
Knipowitschia punctatissima | 85.1%
Phoxinus phoxinus Il ) ) 82.1%
Cottus gobio 79.1%

Figure 3.8.2 Percentages of Correctly Classified Instances (CCI) for the 32 modeled spe-
cies. Species are sorted in descending CCI order.

Given a species assemblage containing s species, 2° different combinations of species
presence and absence data exist. In the case of our data set, 2°>=4 294 967 296 different
patterns are theoretically possible, but only 131 different patterns were actually found in
264 observations. This is clear evidence for the non-independence of different species re-
sponses to environmental factors and for the role that biotic interactions play.

Even though simultaneously modeling all the species in a community or in an assem-
blage is theoretically more efficient, there are practical constraints that may hinder this ap-
proach. In fact, the complexity of the ANN structure grows very rapidly with the number of
species to be modeled, and the need for training data grows proportionally. Moreover, the
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set of predictive environmental variables used by the model might be more relevant to some
species than to others, and this would impair the model response. In the case of fish assem-
blages, however, the overall number of species is usually not too large and the species re-
sponse to environmental variables is rather homogeneous. Therefore, a single model ap-
proach was selected in our study.

A conventional training procedure

The first attempt at modeling the fish assemblage was based on a very conventional ANN
approach, as a 20-17-32 multilayer perceptron was trained using an ordinary error back-
propagation algorithm. This ANN was able to predict the presence of all the species on the
basis of environmental variables. The output values it returned ranged in the [0,1] interval
and therefore they could be regarded as the probability for each species of being observed.
The predicted fish assemblage composition was then obtained by setting a 0.5 threshold for
each output, thus converting the continuous output values into binary values (i.e. species
presence or absence estimates) by means of a process that is closely related to defuzzyfica-
tion.

The overall accuracy of the ANN model was very good, as the CCI ranged from 98.5%
to 79.1% (Fig. 3.8.2), while the average percentage of CCI was 91.6%. The percentage of
CCI, although very convenient and easy to compute, is sometimes a misleading criterion for
evaluating the ability of a model to predict species composition. In fact, it would be really
appropriate if the number of presence records for a given species were exactly the same as
the number of absence records, and it would still be acceptable if the ratio between pres-
ence and absence records was not too far from one. On the contrary, when the ratio be-
comes too small (or too large), an ANN model can be easily affected by a significant bias.
For instance, when very rare species are modeled, an ANN that always returns null outputs
can easily provide a very high CCI percentage. In other words, if a species were present in
2 out of 100 records (i.e. if its frequency were 2%), an ANN would be very easily able to
provide 98% of CCI by constantly predicting the absence of that species. Needless to say,
notwithstanding a very high CCI percentage, such an ANN could not be considered as a

\\ true model.

Therefore, another procedure was selected for evaluating the accuracy of the ANN
model in the light of the actual frequency of presence or absence record for each species. In
particular, the K statistics system (Cohen 1960; Fielding and Bell 1997) was applied to test
whether the predictions for each species were significantly different from those of a random
model or not. The ANN model was able to effectively predict 20 species out of 32, i.e. in
20 cases the K statistics was significantly different from zero (p=0.95), whereas it failed in
the remaining cases ftable 3.8.3).

It was evident, however, that the ability of the ANN to predict species presence and ab-
sence was strictly related to species frequency. In fact, the maximum frequency among the
12 species with non-significant K statistics was 8.71%, and 10 of them had frequencies
lower than 5%. Thus, the model failed to predict several rare species, while it was quite ac-
curate in predicting more frequent species (Fig. 3.8.3).

This result, of course, was not surprising. An ANN learns from examples, and it is obvi-
ous that it cannot learn how to correctly predict the presence of a species if the latter is only
present in a few records. In these cases no ANN, or any other model, can associate the spe-
cies response to patterns in the variation of predictive variables. Obviously, exactly the
same problem would occur if a model were trying to predict an almost ubiquitous species.
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The lack of information about the distribution of rare species is usually related to the

- way data are collected. In many cases the sampling effort is evenly distributed over the

3
i

studied region (e.g. a river basin), because the main purpose of the sampling is the charac-
terization of the fish assemblage composition. Therefore, stenotopic species are only found
in a limited number of samples and not enough data are available about their relationships
with environmental variables. A similar problem would also arise for really ubiquitous spe-
cies, although in practice it is not common that a species is present in almost all the records
in a data set. Moreover, density and population structure data usually provide useful hints
about the environmental gradients that play a role in defining the distribution of ubiquitous
species. As far as assemblage composition modeling is concerned, however, the practical
effects of the lack of information about the relationships between environmental variables
and species absence are exactly the same as those of the lack of information about the rela-
tionships between environmental variables and species presence.
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Figure 3.8.3 Conventional ANN model: K statistics vs. species frequency. The model is
not reliable as far as rare species are concerned, whereas it works much better with more
frequent species.

Problems in error computation

Even though no modeling technique can actually fill the gaps in the available information,
it is certainly possible to improve a model by exploiting that information in a more effective
way.

A conventional ANN training procedure is driven by the minimization of the Mean
Square Error (MSE). As soon as the MSE becomes smaller than a previously defined value,
the training procedure is stopped, assuming that the agreement between ANN output values
and target (i.e. known) values is good enough. The early stopping procedure that was used
in this study involves a similar role of the MSE, although the latter is minimized with re-
spect to a validation data set that is independent of the training data set. In particular, the
MSE is computed by comparing the continuous ANN outputs with the binary target values.

This approach makes perfect sense when continuous quantitative variables are involved
(e.g. biomass, concentration, etc.), but it is not adequate when species composition is taken

into account. There are at least three reasons for this inadequacy and they are probably not
as obvious at they should be.
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Table 3.8.3 Conventional ANN model: observed and predicted frt.equ-ency by species
(sorted in descending order of observed frequency) and K statistics (significant values are
marked with asterisks).

observed predicted K
frequency frequency
Salmo (trutta) trutta 76.5% 83.3% 0.719 :
Leuciscus cephalus 28.0% 31.1% 0.727 .
Padogobius martensii 26.1% 36.4% 0.660 .
Scardinius erythrophthalmus 25.0% 28.0% 0.806
Esox lucius 24.6% 31.1% 0.709 *
Rutilus erythrophthalmus 24.6% 26.9% 0.723 :
Alburnus alburnus alborella 21.2% 25.8% 0.748
Cottus gobio 20.8% 19.3% 0.528 *
Tinca tinca 20.1% 25.0% 0.816 *
Cobitis taenia 17.8% 15.5% 0.619 *
Phoxinus phoxinus 17.8% 11.4% 0.442 :
Anguilla anguilla 17.4% 12.9% 0.560 .
Knipowitschia punctatissima 17.0% 12.1% 0.440 .
Salmo (trutta) marmoratus 10.2% 9.8% 0.853 .
Sabanejewia larvata 9.8% 11.0% 0.696
Ictalurus melas 9.5% 12.5% 0.807 *
Lepomis gibbosus 8.7% 0.8% 0.148 1:.5.
Barbus plebejus 7.2% 2.7% - 0.280 .
Chondrostoma genei 6.8% 5.7% 0.709
Gasterosteus aculeatus 6.8% 6.4% 0.419 *
Carassius auratus 6.4% 0.0% 0.000 ns.
Gobio gobio 6.4% 1.2% 0.583 *
Leuciscus souffia 4.9% 0.0% 0.000 n.s.
Thymallus thymallus 4.9% 0.4% 0.137 ns.
Lampetra zanandreai 3.8% 0.0% 0.000 ns.
Gambusia holbrooki 3.4% 0.0% 0.000 n.s.
Barbus mevidionalis 3.0% 0.8% 0.190 ns.
Micropterus salmoides 3.0% 0.0% 0.000 n.s.
' Perca fluviatilis 1.1% 0.0% 0.000 ns.
ramis brama 0.8% 0.0% 0.000 n.s.
)g,prinus carpio 0.8% 0.0% 0.000 n.s.
Salvelinus fontinalis 0.8% 0.0% 0.000 n.s.

Firstly, when a threshold function is applied for discretizing the ANN outputs, the rt_‘.al
contribution of each single error to the MSE strongly depends on the output value. For in-
stance, if the target value for a given species is 0 (i.e. absence), a 0.495 output Yalue would
contribute (0.495-0)=0.245025 to the overall MSE, although it would result ina perfect
agreement when the ougput value is transformed into a binary value by passing it to -the
threshold function (0.495<0.5 would be transformed into 0, i.e. absence). A very similar
output value, like, for instance, 0.505, would provide an almost identical contribution to the
overall MSE (0.505-0)>=0.255025, but it would be in disagreement with the target value af-
ter applying the threshold function (0.505>0.5 would be transformed into 1, i.,e: pres.ence).

Secondly, the potential contribution of each modeled species to the MSE is 1dentlca'l and
it varies between 0 and 1. Although this makes perfect sense from a computational point qf
view, it fails to capture the real effect of different errors in different contexts, beca}use it
does not weight each error according to its impact on the characterization of the species as-
semblage structure. In fact, a wrong prediction about a single species might have a limited
effect on the overall composition of the predicted assemblage if the latter included many
other species, while it might completely change the assemblage structure if the latter in-
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cluded only a few species. In other words, each species has an ecological “meaning” that
depends not only on its ecological characteristics, but also on the way the species combines
with other species, i.e. on the assemblage structure.

Finally, the efficiency of sampling is usually not homogenous, even within a single
study. For instance, it is much more likely that a species, although present at a given site,
escapes from sampling devices in a large river than in a small stream. Therefore, the contri-
butions of different species to the error computation should not be simply added to each
other, as in the case of MSE. :

In conclusion, species presence and absence data are not to be used as mere numbers
(i.e. as 0s and 1s) in the error computations that are needed for optimizing species composi-

tion models. As a consequence, the MSE is not an appropriate measure of the error in such
models.

An enhanced training procedure

Several options exist for implementing an ecologically sound procedure for error computa-
tion, although not all the problems that :were mentioned in the previous section can be
solved. Since it is clear that the role of each species depends on other species, i.e. on spe-
cies assemblage structure, a binary similarity coefficient may provide a simple yet effective
way to measure the difference between the model outputs (predicted assemblage) and the
target values (observed assemblage). This solution leads to a different problem, i.e. the se-
lection of the most appropriaté similarity coefficient. However, this is a common problem
in ecological multivariate data analysis and most ecologists are acquainted with it and are
certainly able to select a suitable coefficient. In our case study, we were able to assume that
the fish assemblage composition was recorded very accurately at every sampling site. This
implied that species absence in samples might be regarded as reliable information. There-
fore, a symmetrical similarity coefficient that slightly emphasized differences in species
composition was selected as a measure for model errors. In particular, the Rogers and Tani-
moto (1960) similarity coefficient (Sj) was chosen and transformed into a dissimilarity

coefficient (D), which was monotonically related to the error in the species composition
prediction:

a+d
T S — D.=1-5.
* T a42b+2c+d i *

In the above formula a and d are the number of species whose presence (a) or absence
(d) are correctly predicted, whereas b and ¢ are the number of species present that are not
predicted by the model and vice-versa.

The conventional ANN fraining procedure was then modified in order to use the mean
dissimilarity between model outputs and validation patterns (i.e. samples) as the criterion
for controlling ANN learning. In particular, the training procedure was halted as soon as the
mean dissimilarity began to increase. This allowed an optimal generalization of ANN learn-
ing, which only takes place during the first part of the training procedure, i.e. while the er-
ror (the dissimilarity, in this case) decreases monotonically (Fig. 3.8.4).

The results of this enhanced training procedure were almost identical to those of the
conventional procedure in terms of CCI percentages, but they showed a substantial im-
provement when other criteria were taken into account. In fact, while the average value for
the CCI was 91.8%, i.e. only 0.2% higher than the one obtained by conventional training,
the differences between predicted and observed species frequencies, as computed on the ba-
sis of the whole test set, were substantially smaller than in the case of conventional training
(2.2% and 3.5% in absolute values, respectively).
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Figure 3.8.4 The training procedure for the enhanced ANN model. The modified steps are
shown on grey background.

However, the most important advantage of the modified training procedure over the
conventional one was in its ability to obtain better predictions for those species whose fre-
quency was smaller than 10% (Table 3.8.4, but see also Table 3.8.3).

Moreover, the only species whose presence was never predicted by the model were the
two rarest species, namely Cyprinus carpio and Salvelinus fintinalis, while the convention-
ally trained model was not able to predict the presence of 9 species out of 32.

Finally, the K statistics results were on average much higher than in the conventionally
trained model (0.59 and 0.42, respectively), and only 5 out of the 7 less frequent species
were associated to K values that were not significantly different from zero. This implied
that the enhanced model was unable to predict only 5 species, while the conventionally
trained model failed with 12 species.

In order to summarize the differences between the conventional (MSE-based) ANN
model and the enhanced (dissimilarity-based) one, it is useful to compare the K statistics
species by species, as shown in Fig. 3.8.5. The small boxes show the K values for the con-
ventional model (solid boxes) and for the enhanced one (white boxes), while the whisker on
the left of each box indicates the lower end of the confidence interval of the K statistics (the
upper one is not relevant in this case, so it was omitted). Obviously, the K statistics is not
significantly different from zero (at a probability level p=0.95) if the left whisker intersects
the vertical axis at K~0. The boxes on the vertical axis with no whisker on the left show
those cases in which the K statistics was not computed because the model always predicted
the absence of the corresponding species. The species have been sorted according to their
frequency, shown in parentheses on the right of each species name.

It is very easy to notice that there were no cases in which the conventional training pro-
vided higher K values than the enhanced model, but the most striking difference between
the two models can be observed for the less frequent species. In fact, the enhanced model
led to dramatic improvements in the predictive ability and in several cases the K statistics
for the enhanced model was significant, while it was not significant or not even computable
for the conventional model.

In the case of the enhanced model only five species were associated with values of the K
statistics that were not significant, while twelve species were in that situation when the
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conventional model was used. It is interesting to noe that the largest changes in K values
were observed for species whose frequency ranged from 3% to 9%. These species, that
cannot be considered as truly rare species, are certainly associated with particular physical,
chemical and biotical conditions and play a relevant role in defining the ecological charac-
teristics of the fish assemblage.

Table 3:8.4 Enhanced ANN model: observed and predicted frequency by species (sorted in
descending order of observed frequency) and K statistics (significant values are marked
with an asterisk).

observed predicted K
freq y freq Y.
Salmo (trutta) trutta 76.5% 74.6% 0.726 *
Leuciscus cephalus 28.0% 24.6% 0.805 *
Padogobius martensii 26.1% 22.0% 0.767 *
Scardinius erythrophthalmus - 25.0% 23.5% 0.836 *
Esox lucius 24.6% 21.2% 0.754 *
Rutilus erythrophthalmus 24.6% 21.6% 0.765 *
Alburnus alburnus alborella 21.2% 19.7% 0.790 *
Cottus gobio 20.8% 12.5% 0.640 *
Tinca tinca . 20.1% 17.4% 0.824 *
Cobitis taenia . 17.8% 15.2% 0.675 *
Phoxinus phoxinus 17.8% 14.0% 0.615 *
Anguilla anguilla 17.4% 13.3% 0.721 *
Knipowitschia punctatissima 17.0% 13.6% 0.665 *
Salmo (trutta) marmoratus 10.2% 9.1% 0.876 *
Sabanejewia larvata 9.8% 8.3% 0.794 *
Ictalurus melas 9.5% 8.3% 0.829 *
Lepomis gibbosus 8.7% 23% 0375 *
Barbus plebejus 7.2% 4.5% 0.603 *
Chondrostoma genei 6.8% 4.5% 0.709 *
Gasterosteus aculeatus 6.8% 3.8% 0.601 *
Carassius auratus 6.4% 1.9% 0415 *
Gobio gobio 6.4% 4.5% 0.603 *
Leuciscus souffia 4.9% 23% 0.476 *
Thymallus thymallus 4.9% 1.5% 0.458 *
Lampetra zanandreai 3.8% 1.5% 0.485 *
Gambusia holbrooki 3.4% 0.4% 0.195 n.s.
Barbus meridionalis 3.0% 1.5% 0.560 *
Micropterus salmoides 3.0% 1.1% 0.490 *
Perca fluviatilis 1.1% 0.4% 0497 n.s.
Abramis brama 0.8% 0.4% 0.394 ns
Cyprinus carpio 0.8% 0.0% 0.000 n.s
Salvelinus fontinalis 0.8% 0.0% 0.000 n.s.

Conclusions

Pre_dicting the species composition of fish assemblages on the basis of environmental de-
scriptors is a feasible task that can be carried out either by means of conventional probabil-
istic models (e.g. Oberdorff et al. 2001) or by means of ANNs (e.g. Aguilar Ibarra et al.
2003; Joy and Death # 3.5; Olden and Jackson 2001). ANNs have been successfully used in
these applications, as they allow exploitation of heterogeneous sources of information in a
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very effective way (Scardi and Harding 1999). Moreover, ANNs may be ea§i}y enhanced
and adapted to specific modeling tasks (Scardi 2001), as they are entirely empirical tools.
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Figure 3.8.5 A comparison of K statistics values for the conventional model, u.sing Mean
Square Error as thewerror criterion (black squares), and the enhanced model, using Rogers
and Tanimoto (1960) dissimilarity instead (white squares). The line on the left of each
square shows the lower limit of the confidence interval of the K statisticg Thergfor'e, when
the line (or the symbol) intersects the vertical axis at K=0 the K statistics is not significantly
different from zero (p=0.95).

Even though ANNs are the most effective tools for modeling species compositipn
(Olden and Jackson 2002), they cannot solve problems that arise from a lacl_( of rel_evant in-
formation. In fact, in many cases the only predictive variables that are readily avallable.' for
the modeler are those that can be obtained from cartographic records or direct observation.
Other sources of information that involve sampling and laboratory analyses are usually less
abundant and therefore play z} secondary role. Moreover, species distribution data are also
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scarce, and distributed in space according to the local resources for monitoring activities
rather than on the basis of a suitable and consistent sampling design. Therefore, predicting
the species assemblage composition is not feasible without compromises. For instance, ac-
curate ANN models can be trained on a regional scale, or focus on species assemblages
simpler than communities. Our application, dealing with fish assemblages in northeastern
Italian streams and rivers, belongs to this category and is certainly an example of successful
modeling that can be used in practical applications. For instance, our model can be consid-
ered as a generator of expected fish assemblages, i.e. of biotic reference conditions in the
light of the EU Water Framework Directive.

In particular, our model predicts the assemblage structure on the basis of environmental
descriptors that are mainly (but not exclusively) focused on the geo-morphological charac-
teristics and is based on data from real assemblages, as observed in a number of real sites.
Therefore, the predicted assemblage is not just the one that is considered present at a theo-
retical pristine site, but a compromise that represents the more likely biotic response given a
number of existing constraints, mainly related to the long term anthropogenic impacts on
pristine ecosystems (e.g. changes in land usage, introduction of exotic species, modification
of river banks, etc.). In regions where pristine conditions have not existed for several centu-
ries, this is probably the only meaningful way to define reference conditions.

The ANN models presented here are not only an achievement in applied ecological re-
search, as they also point out more general problems in species distribution modeling and
provide solutions for them.

The most general scientific issue that emerged from our work is that very rare and very
frequent species cannot be effectively modeled unless enough information is available. This
obviously does not happen in many real studies, in which the only acceptable solution
should be based on several species-specific sampling designs, i.e. on multiple sampling de-
signs tailored to fit the distribution of each studied species.

Another relevant scientific issue that was highlighted by our work was the need for ade-
quate error measurements in ecological applications. In fact, conventional criteria like MSE
may fail when applied to data that are not strictly quantitative, like species presence and ab-
sence data. These data are binary from a formal point of view, but they cannot be treated
Just as sequences of Is and 0s. Each species contributes to the assemblage structure in a
way that depends simultaneously on its ecological characteristics and on the composition of
the assemblage. Therefore, some errors in predicting species composition might be more
relevant than others. For instance, in many upstream sites the only fish species is Salmo
frutta trutta, which is also very frequent as a member of much more complex assemblages
in other sites downstream. It is obvious that not predicting its presence in an upstream site
would be a much more severe error than not predicting its presence elsewhere.

Using a binary dissimilarity coefficient instead of MSE as the criterion for measuring
prediction errors provided a significant enhancement of a conventional ANN model. Even
though the functioning of the error back-propagation algorithm was not changed, the modi-
fied training procedure relied on the minimization of the mean dissimilarity as a criterion
for stopping the learning phase, thus allowing optimal generalization of the model. In other
words, the enhanced training procedure did not change the way the ANN model learned,
but it changed the conditions for stopping its optimization.

In our application the Rogers and Tanimoto (1960) dissimilarity was used, because we
were confident about the reliability of our absence data and because we wanted to stress
differences rather than resemblances between assemblages. In different situations, however,
other coefficients would prove more adequate. For instance, if absence data are not com-
pletely reliable (e.g. because of avoidance of the catching net) an asymmetric dissimilarity
that only takes into account presence data, like that based on Jaccard’s coefficient (Jaccard
1908), could be more appropriate.
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The enhanced training procedure not only improved the overall accuracy of the species
composition predictions, but it also significantly increased the ability of the model to cor-
rectly predict the occurrence of rare species, thus mitigating the effects of the unbalanced
availability of information about rare species that was previously mentioned.

In order to obtain further improvements of species composition models, however,
changes in the modeling strategies should be coupled with the optimization of the sampling
strategies. In fact, modeling rare or ubiquitous species is only feasible if adequate informa-
tion is available, such as the ratio between the number of absence and presence records in
training and validation data set which should be as close to one as possible, while the vari-
ability of the environmental descriptors within each subset, i.e. within the presence or ab-
sence subsets, should be maximum. Therefore, ad hoc sampling designs that significantly
deviate from the usual monitoring approaches are needed. This shortcoming is not specific
to ANN, as it obviously affects any modelling technique.

The enhanced ANN model presented in this chapter was incorporated into the software
tool that was published as one of the deliverables of the PAEQANN project and that can be
found in the CD attached to this book. Therefore, the readers will be able to experiment the
model on their own, to check its results and compare the predictions it provides with those
of other models.

Appendix

Both the percentage of Correctly Classified Instances (CCI) and the X statistics (Cohen 1960; Fielding
and Bell 1997) are based on the confusion matrix, i.e. on 2 2 x 2 contingency table in which the pre-
dicted presence and absence of a taxon are compared with their observed counterpart. In particular, if
each case is expressed as a proportion py, then the confusion matrix will be:

Predicted
1 0
Observed Pu P
Pa P22

and 'thl:j\ium of its elements will be 1. The CCI percentage will then be computed as:

2
CCI%=100-) p,

i=l

The K statistic can be easily computed from the same confusion matrix. The observed (P,) and ex-
pected (P.) proportion of agreement between observed and predicted data are the basis for the K statis-

tics computation: ¥

«_B-P
1-P

In particular, P, is closely related to CCI%, whereas P, depends on the number of cases in all the ele-
ments of the confusion matrix:

R,='_Z:,pi,~ Pz:i(ipij'ipﬂ]

i=1 \_j=1 =

In order to test the significance of the deviation from zero of the X statistics, the standard error s, has
to be computed, because the ratio between K and sy is distributed as the standardized normal variate Z.
The standard error sk, can be obtained as:

P+P’-C K
S e Z=—
(1-P)-Vn Sko

where n is the number of cases considered in the confusion matrix and C can be obtained as

\

C=ﬁ[ip,», JZZIZPJ '(jz:p'f +,Z;:pﬂﬂ

i=1 | j=1

It is very ir.npoﬁant, however, to remember that the standard error sy is not exactly the same as that
needed, for instance, to compute the two-sided confidence interval for X,




