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a LADYBIO, CNRS—Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
b Department of Biology, University of Roma, Via della Ricerca Scientifica, 00133 Rome, Italy
c Alterra, Green World Research, Department of Freshwater Ecosystems, P.O. Box 47, 6700 AA Wageningen, The Netherlands
d Department of Environmental Chemistry, University of Copenhagen, Copenhagen, Denmark

a r t i c l e i n f o a b s t r a c t
Article history:

Published on line 28 December 2005

Keywords:

Trophical functional group

Ecological indicator

Water body types

Exergy is a measure of the free energy of a system with contributions from all components

including the energy of organisms, and it is used as an ecological indicator. In this study,

we implemented a self-organizing map (SOM) for patterning exergy of benthic macroinver-

tebrate communities. The datasets were extracted from the database EKOO consisting of

650 sampling sites in the Netherlands including 855 species. Using these datasets, exergy of

five trophic functional groups (carnivores, detritivores, detritivore–herbivores, herbivores,

and omnivores) were calculated for each sampling site on the basis of the biomass data.

Exergy of each trophic group was used as input data of the SOM. By training the SOM the

sampling sites were classified into five clusters and the classification was mainly related to

water types of the sampling sites. Exergy of different trophic groups responded differently

to different water types displaying characteristics of target ecosystems. Finally, the results

show that exergy is an effective ecological indicator and patterning changes of exergy is an

effective way to evaluate target ecosystems.

© 2005 Elsevier B.V. All rights reserved.

1. Introduction

Ecosystems are represented in diverse ways through the char-
acteristics of their components. In aquatic ecosystems, the
species composition of benthic communities depends on the
diversity and stability of the aquatic habitats (Cummins, 1979;
Ward and Stanford, 1979) that provide the possibilities of
development (Malmqvist and Otto, 1987). Different species
have different preferences for different environments at dif-
ferent scales. Therefore, information on the community struc-
ture can indicate the states of the respective ecosystems.
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There are several approaches to describe a community struc-
ture such as habitat, trophic structure, functional feeding
groups, etc. Among them, information on the trophic struc-
ture of the community reflects the effect of biotic interac-
tions and energy flows, and complex interactions results from
multiple pathways linking different ecosystem components
(Carpenter, 1988).

Among various indicators suggested to describe ecosystem
status (Mckenzi et al., 1992), exergy is a unique and efficient
expression of energy status in ecosystems (Jørgensen, 1997;
Jørgensen and Mejer, 1977). It is an effective measurement
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to represent the degree of accumulated energy through the
development history of the target ecosystem. Thermodynamic
definition of exergy is defined as the amount of work (entropy-
free energy) a system can perform when it is brought to
thermodynamic equilibrium with its environment (Jørgensen,
1997). The environment or reference state could be repre-
sented as the inorganic soup of the system without life. With
this reference state the exergy measures directly the distance
between the present state of the considered ecosystem and
the thermodynamic equilibrium (Jørgensen, 1992; Jørgensen
et al., 1995). Exergy in an ecosystem contents biogeochemical
free energy and energy of organization information as qual-
ity function of the distance to the system in thermodynamic
equilibrium at the same temperature and pressure but with-
out life and information (Jørgensen, 1997; Debeljak, 2002). It
is also considered as measure of the survival and growth of
organisms and as measure of a general ecosystem state and
development (Jørgensen, 1995; Debeljak, 2002).

Jørgensen et al. (2002) explained the structure of func-
tional groups of benthic macroinvertebrates by a structurally
dynamic model and the maximum exergy principle, and sug-
gested the development of methods to incorporate the maxi-
mum exergy principle in the artificial neural networks (ANN)
because structurally dynamic model is too time consuming
to be applicable on a medium to large dataset covering many
sites. As well documented, the complexity and non-linearity
are generally embedded in ecological data resulted from inter-

Fig. 1 – Sampling sites in the province of Overijssel, The
Netherlands.

Nijboer, 2000). The data were collected at 650 sites of five dif-
ferent major water types in the province Overijssel from 1981
to 1985 (Fig. 1).

In the previous study, multivariate analysis techniques
(cluster analysis and canonical ordination) were used to derive
and describe site groups in terms of taxon composition and
mean environmental conditions. These site groups resulted
in 40 cenotypes (Verdonschot, 1990). The cenotypes were
grouped into 12 categories according to similarities of eco-
logical characteristics of sampling sites in five main water
types (Table 1). The cenotypes describe the general character-
istics, the macroinvertebrate species and the abiotic charac-
teristics of groups. These characteristics are the most impor-
tant starting point for water policy and management as they
can be influenced directly (Heikens and van den Brink, 2001).
In this study we consider the five major water types and

Table 1 – List of water types sampled and number of
samples in each water type

Water types Sub-water types Number of
samples

Helocrene springs (h) Acid springs (As) 9
Springs (Sr) 52

Streams (s) Temporary streams (Ts) 42
Upper watercourses (Uc) 46
actions between different variables influencing the commu-
nity structure (Legendre and Legendre, 1998; Lek and Guégan,
2000). Thus, with these non-linear ecological data, non-linear
modelling methods such as ANNs should be preferred (Blayo
and Demartines, 1991). ANNs were well applied for assess-
ment of ecosystems (Chon et al., 1996; Dzeroski et al., 1998;
Walley and Fontama, 1998; Schleiter et al., 1999; Walley and
O’Connor, 2000; Park et al., 2003). Recently, attention has been
given to community organization through unsupervised ANNs
in diverse aspects (Lek and Guégan, 1999, 2000; Recknagel,
2002). Park et al. (2001) demonstrated that ANNs could be
used for the changes in exergy as well as for extracting infor-
mation on relations between community and exergy data.
Through the learning process of the ANNs, we can define
typical patterns playing a role as an actual entity in collec-
tively representing communities of similar types, referred to
patterning (Chon et al., 1996). Patterning exergy as ecological
indicator in terms of thermodynamics may provide important
ecological information to understand different ecosystems,
and may be useful for the ecosystem management. There-
fore, in this study, we consider the exergy at different trophic
groups of benthic macroinvertebrates to characterize target
systems using an artificial neural network. It could be a use-
ful tool in managing aquatic ecosystems according to the EU
Water Framework Directive (http://www.cordis.lu/fp5/).

2. Methods

2.1. Ecological data

The benthic macroinvertebrates dataset was extracted from
the EKOO database in The Netherlands (Verdonschot and
Stream pools (Sp) 19

Rivers and canals (r) Middle watercourses (Mc) 76
Lower watercourses (Lc) 75
Canals (Ca) 19

Ditches (d) Ditches (Di) 125

Lakes and pools (p) Lakes (La) 74
Ponds (Po) 78
Moorland pools (Mp) 35

Total 650

http://www.cordis.lu/fp5/
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Fig. 2 – Relationships of communities of between 201 selected species and 885 all species: (a) species richness, (b) number
of individuals, and (c) exergy.

their 12 subgroups. The general ecological characteristics of
the EKOO database and the cenotypes have been reported in
Verdonschot and Nijboer (2000).

From total of 854 species, mostly dominated by Chirono-
midae, Coleoptera, and Oligochaeta, 201 species were selected
based on the occurrence frequency higher than 10% in all sam-
ples. Both the datasets of “all species” as well as the “selected
species” showed high correlations with each other in species
richness, density, and exergy (R2 ≥ 0.94, Fig. 2). Therefore, the
new dataset with selected species well represents the overall
communities.

From the community database, five trophic groups (car-
nivores, detritivores, detritivore–herbivores, herbivores, and
omnivores) were extracted, and exergy was calculated for
each group at each sampling site, and used as input data
of the modelling. We calculated also a biodiversity using
Shanon–Wienner’s index at each sampling site to compare
their properties as ecological indicators.

2.2. Exergy

Exergy represents the biomass of the system and the informa-
tion that this biomass is carrying. It is possible, according to
Jørgensen et al. (2000, 2002), to calculate the exergy (Ex) of the
invertebrates as:
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elling (see Jørgensen et al., 2000, 2002). If the total biomass in
the system remains constant through time, then the variation
of exergy will be a function of only information embedded in
the biomass (or the structure complexity of the biomass). It
may be called specific exergy, expressed as exergy per unit of
biomass (Marques et al., 1997). This specific exergy (SpEx) was
also calculated from the exergy and biomass as following:

SpEx =
∑

Ex∑n

i=1Ci

In this study, data for benthic macroinvertebrate commu-
nities were used for calculating exergy at five different trophic
functional groups. According to Park et al. (2001) and Jørgensen
et al. (2002), the weighting factors applied for the functional
feeding groups are: detritivores 30, herbivores 35, carnivores
47, detritivore–herbivores 32.5 and omnivores 41.

The data consisted of five trophic groups were proportion-
ally normalized between 0 and 1 in the range of the minimum
and maximum values, and then used as input data in the mod-
elling.

2.3. Modelling process

We used an unsupervised learning algorithm of artificial neu-
ral networks, a self-organizing map (SOM) (Kohonen, 1982,
2001), to pattern benthic macroinvertebrate communities in
terms of thermodynamics. The SOM has found wide applica-
x =

i=1

WiCi

here Ci is the concentration (biomass in this case) of the
th state variable (i.e., selected species), Wi is the information
tored in the ith state variable, and n is the number of variables.
xergy is expressed by this equation in detritus equivalent per
iter; but multiplying by 18.7 it can be converted to kJ/l; see
ørgensen et al. (1995, 2000). The weighting factor expresses
he information that each of the functional feeding groups
arry by the genes. The weighting factors are unfortunately
nly known roughly because our knowledge to the genes of
pecies is very limited. Furthermore, it is not possible to calcu-
ate the exergy of an ecosystem due to its very high complexity.
t should therefore be stressed that the calculations only give
n exergy index for a model of an ecosystem. The use of the
eighting factors is however robust, as it has been possible to

pply this approach successfully in structurally dynamic mod-
tions in the fields of data exploration, data mining, data clas-
sification, data compression, and biological modelling, due to
its properties of neighbourhood preservation and local reso-
lution of the input space proportional to the data distribution.

The SOM usually consists of input and output layers con-
nected with computational weights (connection intensities).
The array of input neurons (i.e. computational units) operates
as a flow-through layer for the input vectors, whereas the out-
put layer consists of a two-dimensional network of neurons
arranged on a hexagonal lattice. The projection obtained by
the incremental learning SOM algorithm, which is commonly
used, is highly dependent on learning order of inputs. Con-
sequently, fine classification is obtained for the latter inputs.
Alternative method to overcome this fault is batch learning
algorithm for constructing self-organizing map, which is used
in this study. The batch computation version is significantly
faster and does not require specification of any learning rate
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factor; therefore it has no convergence problems and yields
more stable asymptotic values for the weight vector than
incremental learning algorithm, and the results of the batch
algorithm are not dependent on the learning order of inputs
(Kohonen, 1998, 2001). The procedure can be described as fol-
lowings:

1. Initialise the values of the weight vector m* by taking the
first K training samples, where K is the number of weight
vectors.

2. For each map unit i, collect a list of copies of all those train-
ing samples x, whose nearest weight vector belongs to unit
i.

3. Take for each weight vector the mean over the union of the
lists in Ni according the following equation:

m∗
i =

∑
j
njhjix̄j∑
j
njhji

,

where the sum of j is taken for all units of the SOM, or if hji

is truncated, over the neighbourhood set Ni in which it is
defined. For the case in which no weighting in the neigh-
bourhood is used,

m∗
i =

∑
j ∈ Ni

njx̄j∑
j ∈ Ni

nj

.

3. Results

3.1. Exergy of benthic macroinvertebrate communities

Exergy values calculated, using 201 selected species of ben-
thic macroinvertebrates, amounted on average 62.0 kJ (S.E. 1.3)
with in wide ranges of 3.7–191.1 kJ. For the different trophic
groups, the mean exergy of detritivores was 23.2 kJ (S.E. 0.7,
range 0.0–97.4) being the highest values for all groups, followed
by herbivores with a mean of 15.4 kJ (S.E. 0.5, range 0.0–78.7),
the omnivores 12.2 kJ (S.E. 0.8, range 0.0–89.3), the carnivores
8.2 kJ (S.E. 0.2, range 0.0–35.3), and the detritivore–herbivores
3.0 kJ (S.E. 0.1, range 0.0–19.0). Exergy calculated with the
“selected species” dataset was highly correlated with that of
the “all species” dataset displaying 0.9981 of regression deter-
minant coefficient (R2) (Fig. 2c). This result shows that the
dataset with selected species represents effectively the origi-
nal dataset as also shown by the relationships in both species
richness and total number of individuals (Fig. 2a and b).

Fig. 3 shows the variations of exergy, specific exergy, and
the biodiversity index for different water types. Different let-
ters on each chart stand for significant differences between
water types (p < 0.05) based on Duncan’s multiple comparison
test using STATISTICA (StatSoft, 2001). Exergy values were low
at acid springs, stream pools, canals, and moorland pools,
which were significantly different from other types. Over-

Fig. 3 – Comparison of exergy (a), specific exergy (b), and
Shanon diversity index (c) at different water types. The
same characters are not significantly different at the 5%
level of confidence by using the Duncan’s multiple
comparison test.
The size of the neighbourhood set Ni can be similar to the
size used in the basic SOM algorithm.

4. Repeat on from point 2 several times until the solutions can
be regarded as steady. In this study, the number of output
neurons was set to 40 (=8 × 5) in 2D hexagonal lattice based
on our experiences and a preliminary study. The detailed
algorithm can be found in Kohonen (1998, 2001).

The training SOM results in a smoothing effect on the
weight vectors of neurons (units). These weight vectors tend to
approximate the probability density function of the input vec-
tor. Therefore weight vectors were visualized on the trained
SOM map. It is efficient to understand the distribution pat-
tern (and contribution to each unit) of each input variable (five
trophic groups in this study) on the SOM map (Park et al., 2003).

We computed a quantization error and topographic error as
evaluation criteria for resolution and topology preservation of
the trained SOM, respectively. The former is the average dis-
tance between each data vector and its best matching unit
(BMU) for measuring map resolution (Kohonen, 2001), and
the latter represents the proportion of all data vectors for
which first and second BMUs are not adjacent for the mea-
surement of topology preservation (Kiviluoto, 1996). Thus, this
error value is used as an indicator of the accuracy of the map-
ping in the preserving topology (Kohonen, 2001).

The learning process of the SOM was carried out
using the SOM Toolbox (Alhoniemi et al., 1999) devel-
oped by the Laboratory of Information and Computer
Science in the Helsinki University of Technology
(http://www.cis.hut.fi/projects/somtoolbox/) in Matlab
environments (The MathWorks, 2001) and adopted the
initialization and training methods suggested by the authors
that allow the algorithm to be optimized (Vesanto et al., 1999).
all specific exergy also displays similar patterns compared

http://www.cis.hut.fi/projects/somtoolbox/
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with exergy. However, the differences between water types
are smaller than that of exergy, and specific exergy is very
high at moorland pools and springs, while exergy and biodi-
versity index are low at both water types. Biodiversity index
also displays different values at different water types. It is low
at acid springs and moorland pools, while high at middle and
low watercourses, lakes, ponds, and ditches. In considering
the water velocity of each water type, exergy values were rel-
atively high at lotic water types such as streams and middle
and lower watercourses, whereas low at lentic types such as
lakes and ponds. In contrast to exergy, biodiversity index was
high at lentic types and low at lotic types.

3.2. Patterning communities with SOM

The learning process of the SOM converged very quickly in 16
iterations (4 in ordering phase and 12 fine tuning phase) with
0.210 of the quantization error and 0.083 of the topographic
error representing the SOM was trained smoothly. On the SOM
map, the benthic macroinvetebrate communities were pat-
terned according to the similarities in exergy (Fig. 4a and b).

The units of the SOM map were classified into five differ-
ent groups (I–V) based on a cluster analysis with the Ward
algorithm (Fig. 4b). The unified distance matrix algorithm
(U-matrix; Ultsch and Siemon, 1990; Ultsch, 1993) was also
applied to find clusters on the SOM units, and it showed also
similar results, although the results are not presented in the
fi

clusters on the SOM map (Fig. 4a). The size of the labels is
proportional to the number of sampling sites in the same habi-
tats, ranging from 1 to 28 sampling unites. Overall, the sam-
pling sites from the same water types were assigned closely
together on the SOM map. For example, pools and lakes (p) and
ditches (d) are mainly located in the upper areas of the SOM
map, helocrene springs (h) are in the lower right and in the
mid left areas, streams (s) are in the left and in the lower areas
on the SOM map, and rivers and canals (r) relatively scatter on
the map, although they are showing weakly spread.

3.3. Visualization of exergy of trophic groups

The learning process of the SOM resulted in calculating con-
nection intensities (weights) that represent a typical input
vector for each of the input samples that fall into a particular
SOM unit. In this study, connection weights represent esti-
mated exergy of each trophic group in each SOM unit. Thus, it
is helpful to visualize estimated exergy of each trophic group
on the SOM map to evaluate the importance of each group at
the sampling sites in each SOM unit. Fig. 5 shows the distri-
bution of estimated exergy of each trophic group on the SOM
map.

Dark represents high values of exergy, whereas light is low
values. Overall, the mean values of exergy estimated by the
SOM were similar to those of raw data. The estimated exergy
of carnivores was on mean 7.8 kJ (S.E. 0.6, range 4.0–17.1), detri-

F
g
S
w
t
S

gure. Different grey scales or shaded types display different
ig. 4 – Classification of samples at five different water types on
roups (a). Hierarchical cluster analysis with Ward algorithm wit
OM units (b). The Latin numbers (I–V) stand for different cluster
ater types, and are given in Table 1. The size of the label is pro

ypes in the range of 1–35 samples. The Arabic numerals on the
OM map from the upper left units to the lower right units.
tivores 26.3 kJ (S.E. 1.6, range 10.3–47.9), detritivore–herbivores
the SOM map trained with exergy of five trophic functional
h Euclidean distance measure was applied to cluster the
s. The labels in the hexagonal units represent different
portional to the number of sampling sites in the water
second column of dendrogram represent each unit of the
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Fig. 5 – Visualization of the estimated exergy of trophic functional groups during the learning process of the SOM. Dark
represents high values of exergy, whereas light is low values. The values were normalized between 0 and 1 to emphasize
the relative importance of each group on the SOM map units.

3.4 kJ (S.E. 0.3, 1.1–6.1), herbivores 14.9 kJ (S.E. 1.3, range
4.0–33.6), and omnivores 12.4 kJ (S.E. 2.4, range 1.2–60.8). Differ-
ent trophic groups showed different distribution patterns on
the SOM map. Carnivores and herbivores show high values in
the upper right areas of the SOM map (cluster II) indicating
relatively similar distribution patterns on the map (r = 0.78,
p = 0.000). In detail, however, they display the different SOM
units for the highest values. Detritivores are the highest in the
middle areas (cluster IV) and detritivore–herbivores show the
highest values in the lower areas (cluster II, IV, and V). Finally,
omnivores show the highest values in the lower right areas
displaying a clear gradient from the upper areas to the lower
areas. This indicates that the omnivores observed were mainly
assigned for the samples in the lower right areas of the SOM
map (cluster V).

3.4. Differences of exergy at different water types

In the five main water types we considered 12 different sub-
groups of water types (Table 1). Considering the subgroups,
they showed more clear distribution patterns on the SOM map.

Fig. 6 shows distribution of samples of the different water
types. Samples from helocrene springs are divided into two
subgroups of water types mainly based on the acidity: acid
springs (As) and springs (Sr). Samples from As are mainly in
the left areas of the SOM map, whereas samples from Sr are
in the lower right areas (Fig. 6a). Sr is highly related to high
exergy of omnivores, whereas As is relatively low exergy of all
five trophic groups (Fig. 5).

Samples from streams consist of three subgroups of water
types: temporary streams (Ts), upper watercourses (Uc), and
stream pools (Sp). Samples are not mainly located in the
right left areas on the SOM map (Fig. 6b). Samples of Ts
are in the middle areas of the map, those of Uc are in the
middle and upper areas, and those of Sp are in the upper
left areas. Therefore, Ts is highly related to detritivores and
detritivore–herbivores, and Sp to low value of overall exergy
(Fig. 5). In particular no samples from springs and streams are
assigned in the upper right and right areas of the SOM map
(cluster III). This presents that the exergy of carnivores and
herbivores are low in the water types of helocrene springs and
streams.



e c o l o g i c a l m o d e l l i n g 1 9 5 ( 2 0 0 6 ) 105–113 111

Fig. 6 – Distribution of sampling sites at different sub-water types on the SOM map trained with exergy of five trophic
functional groups. Five water types in Fig. 4 are divided into corresponding groups of 12 sub-water types. (a) Helocrene
springs, (b) streams, (c) ditches, (d) lakes and pools, and (e) rivers and canals. The labels in the hexagonal units represent
sub-water types, and are explained in Table 1. The size of the label is proportional to the number of sampling sites in the
water types in the range of 1–34 samples.

Samples in the ditches (Di) show high exergy of herbivores
(and carnivores) as most samples are assigned for the upper
right areas (Figs. 4 and 5c). They show also relatively low exergy
of detritivore–herbivores, detritivores, and omnivores. This is
comparable to those of helocrene springs and streams indi-
cating high values of exergy in these groups.

Samples in pools and lakes are considered in three sub-
groups of water types: lakes (La), pools (Po), and moorland
pools (Mp) (Fig. 6d). Samples of La scatter on the whole SOM
units indicating that there are no specific types of exergy
in trophic groups. However, samples from Po are mainly
located in the upper right areas of the SOM map showing
high exergy of carnivores mainly, although some samples
in the left areas represents low exergy (Fig. 5). Samples of
Mp are mainly assigned in the left areas of the SOM map.
These left areas represent low exergy for each trophic group
(Fig. 5).

Samples from rivers and canals are considered in three
subgroups of water types: middle watercourses (Mc), lower
watercourses (Lc), and canals (Ca). Canals are mainly in the

left areas of the SOM map and some in the lower areas (Fig. 6e).
This represents that the exergy of carnivores and herbivores
were relatively low in this water type, while detritivores and
detritivore–herbivores were relatively high (Fig. 5). Middle and
lower watercourses scatter widely over the whole SOM units
as like lakes, although they show relatively high frequencies
in the middle areas.

4. Discussion and conclusion

In this study, exergy was calculated with benthic macroinver-
tebrate communities for different trophic groups, and then
used for patterning samples through an adaptive learning
algorithm, SOM. Exergy represents the amount of work a sys-
tem can perform when it is brought to thermodynamic equi-
librium with its environment. The environment or reference
state could be represented as the inorganic soup of the sys-
tem without life (Jørgensen, 1997). With this reference state
the exergy measures directly the distance between the present



112 e c o l o g i c a l m o d e l l i n g 1 9 5 ( 2 0 0 6 ) 105–113

state of the considered ecosystem and the thermodynamic
equilibrium (Jørgensen, 1992, 1994, 1995, 1997; Jørgensen et al.,
1995). The exergy includes both an energetic and information
content embedded in the biomass, which has been estimated
by the complexity of the organisms DNA (Marques et al., 1997;
Fonseca et al., 2000). Thus, the exergy is correlated to amounts
of biomass of organisms in the target ecosystems as shown in
Christensen (1995).

We compared the differences of exergy, specific exergy, and
biodiversity index at different water types (Fig. 3).

Exergy was low at acid springs, stream pools, canals, and
moorland pools. However, biodiversity was not clearly differ-
ent between water types. This represents exergy can differ-
entiate more effectively the differences of communities of
target ecosystems, although the biodiversity index does not
distinguish the differences of communities. Specific exergy
also shows similar patterns like exergy excluding tempo-
rary streams and moorland pools. They showed different
behaviour in these water types. Therefore, exergy and specific
exergy may be suitable alternatives, which could be used as
goal functions in ecological models and as holistic ecological
indicators of ecosystems integrity (Marques et al., 1997).

In the SOM map patterned with exergy of trophic groups,
overall, the sampling sites from the same water types were
assigned closely together. When we consider sub-water types,
these patterns were even more clearly observed. This is
due to the fact that different water types show different

In conclusion, exergy and specific exergy may be a suitable
alternative, that could be used as goal functions in ecologi-
cal models and as holistic ecological indicators of ecosystems
integrity, and the patterning communities in terms of exergy
is a very useful approach to understand and evaluate ecosys-
tems using the SOM.
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